高铁为什么长这样?力学,力学,还是力学!

(4/10)

高铁为什么长这样?力学,力学,还是力学!

这一切的努力,主要是为了减小由空气引起的摩擦阻力和干扰阻力。

两辆高速列车交会时产生的问题

降低列车运行时的空气阻力是高速列车气动设计时重要的优化方向,但不是全部。列车以高速运行,原本在中、低速时没有表现出来的问题往往会显现出来。如压力波问题、气动噪声问题等。

我们在乘坐高速动车组列车时有过这样的体验:原本平稳运行的列车,在对面列车疾驰而过时伴随着一声呼啸发生了短暂而较强的横向晃动。

这种横向晃动就是由列车的交会压力波所引起的。列车会车时,相对运动的列车车头对空气形成挤压,便会在列车交会内侧的侧壁上产生交替的高压区和低压区。列车速度越高,会车产生的压力波强度也就越大。两列车相向交会运行时产生的会车压力波作用在车体上会对列车侧壁和侧窗强度、列车运行稳定性和旅客乘坐舒适性产生不利影响,甚至可能产生运行安全问题,如车体侧窗破碎、车辆蛇形运动、轮缘与道轨因侧向冲击造成磨损等。

我国铁路客运提速至160公里/小时,就曾多次发生会车引起的列车侧窗玻璃破碎事故。如今,列车的运行速度都在200公里/小时以上甚至是350公里/小时,会车压力波的变化幅值和最大正、负压力极值都会急剧增大,有可能带来更大的负面效应。在列车气动外形设计方面,加长列车流线型头部长度,采用扁宽型头型,可以有效减小交会压力波幅值。

举报